Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Trans R Soc Trop Med Hyg ; 2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2267238

ABSTRACT

BACKGROUND: Reports on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread across Africa have varied, including among healthcare workers (HCWs). This study assessed the comparative SARS-CoV-2 burden and associated risk factors among HCWs in three African countries. METHODS: A multicentre study was conducted at regional healthcare facilities in Côte d'Ivoire (CIV), Burkina Faso (BF) and South Africa (SA) from February to May 2021. HCWs provided blood samples for SARS-CoV-2 serology and nasopharyngeal/oropharyngeal swabs for testing of acute infection by polymerase chain reaction and completed a questionnaire. Factors associated with seropositivity were assessed with logistic regression. RESULTS: Among 719 HCWs, SARS-CoV-2 seroprevalence was 34.6% (95% confidence interval 31.2 to 38.2), ranging from 19.2% in CIV to 45.7% in BF. A total of 20 of 523 (3.8%) were positive for acute SARS-CoV-2 infection. Female HCWs had higher odds of SARS-CoV-2 seropositivity compared with males, and nursing staff, allied health professionals, non-caregiver personnel and administration had higher odds compared with physicians. HCWs also reported infection prevention and control (IPC) gaps, including 38.7% and 29% having access to respirators and IPC training, respectively, in the last year. CONCLUSIONS: This study was a unique comparative HCW SARS-CoV-2 investigation in Africa. Seroprevalence estimates varied, highlighting distinctive population/facility-level factors affecting COVID-19 burden and the importance of established IPC programmes to protect HCWs and patients.

2.
Lancet Infect Dis ; 22(6): 835-844, 2022 06.
Article in English | MEDLINE | ID: covidwho-1698162

ABSTRACT

BACKGROUND: Hand hygiene is at the core of effective infection prevention and control (IPC) programmes. 10 years after the development of the WHO Multimodal Hand Hygiene Improvement Strategy, we aimed to ascertain the level of hand hygiene implementation and its drivers in health-care facilities through a global WHO survey. METHODS: From Jan 16 to Dec 31, 2019, IPC professionals were invited through email and campaigns to complete the online Hand Hygiene Self-Assessment Framework (HHSAF). A geospatial clustering algorithm selected unique health-care facilities responses and post-stratification weighting was applied to improve representativeness. Weighted median HHSAF scores and IQR were reported. Drivers of the HHSAF score were determined through a generalised estimation equation. FINDINGS: 3206 unique responses from 90 countries (46% WHO Member States) were included. The HHSAF score indicated an intermediate hand hygiene implementation level (350 points, IQR 248-430), which was positively associated with country income level and health-care facility funding structure. System Change had the highest score (85 points, IQR 55-100), whereby alcohol-based hand rub at the point of care has become standard practice in many health-care facilities, especially in high-income countries. Institutional Safety Climate had the lowest score (55 points, IQR 35-75). From 2015 to 2019, the median HHSAF score in health-care facilities participating in both HHSAF surveys (n=190) stagnated. INTERPRETATION: Most health-care facilities had an intermediate level of hand hygiene implementation or higher, for which health-care facility funding and country income level were important drivers. Availability of resources, leadership, and organisational support are key elements to further improve quality of care and provide access to safe care for all. FUNDING: WHO, Geneva University Hospitals and Faculty of Medicine, and WHO Collaborating Center on Patient Safety, Geneva, Switzerland.


Subject(s)
Cross Infection , Hand Hygiene , Cross Infection/prevention & control , Guideline Adherence , Hand Disinfection , Hand Hygiene/methods , Health Facilities , Humans , Infection Control/methods , Self-Assessment , World Health Organization
3.
BMC Infect Dis ; 22(1): 80, 2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1649812

ABSTRACT

BACKGROUND: SARS-CoV-2 cases in Germany increased in early March 2020. By April 2020, cases among health care workers (HCW) were detected across departments at a tertiary care hospital in Berlin, prompting a longitudinal investigation to assess HCW SARS-CoV-2 serostatus with an improved testing strategy and associated risk factors. METHODS: In May/June and December 2020, HCWs voluntarily provided blood for serology and nasopharyngeal/oropharyngeal (NP/OP) samples for real-time polymerase chain reaction (PCR) and completed a questionnaire. A four-tiered SARS-CoV-2 serological testing strategy including two different enzyme-linked immunosorbent assays (ELISA) and biological neutralization test (NT) was used. ELISA-NT correlation was assessed using Pearson's correlation coefficient. Sociodemographic and occupational factors associated with seropositivity were assessed with multivariate logistic regression. RESULTS: In May/June, 18/1477 (1.2%) HCWs were SARS-CoV-2 seropositive, followed by 56/1223 (4.6%) in December. Among those tested in both, all seropositive in May/June remained seropositive by ELISA and positive by NT after 6 months. ELISA ratios correlated well with NT titres in May/June (R = 0.79) but less so in December (R = 0.41). Those seropositive reporting a past SARS-CoV-2 positive PCR result increased from 44.4% in May/June to 85.7% in December. HCWs with higher occupational risk (based on profession and working site), nurses, males, and those self-reporting COVID-19-like symptoms had significantly higher odds of seropositivity. CONCLUSIONS: This investigation provides insight into the burden of HCW infection in this local outbreak context and the antibody dynamics over time with an improved robust testing strategy. It also highlights the continued need for effective infection control measures particularly among HCWs with higher occupational risk.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Health Personnel , Humans , Male , Tertiary Care Centers
4.
J Antimicrob Chemother ; 76(11): 3045-3058, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1526166

ABSTRACT

OBJECTIVES: The COVID-19 pandemic has had a substantial impact on health systems. The WHO Antimicrobial Resistance (AMR) Surveillance and Quality Assessment Collaborating Centres Network conducted a survey to assess the effects of COVID-19 on AMR surveillance, prevention and control. METHODS: From October to December 2020, WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) national focal points completed a questionnaire, including Likert scales and open-ended questions. Data were descriptively analysed, income/regional differences were assessed and free-text questions were thematically analysed. RESULTS: Seventy-three countries across income levels participated. During the COVID-19 pandemic, 67% reported limited ability to work with AMR partnerships; decreases in funding were frequently reported by low- and middle-income countries (LMICs; P < 0.01). Reduced availability of nursing, medical and public health staff for AMR was reported by 71%, 69% and 64%, respectively, whereas 67% reported stable cleaning staff availability. The majority (58%) reported reduced reagents/consumables, particularly LMICs (P < 0.01). Decreased numbers of cultures, elective procedures, chronically ill admissions and outpatients and increased ICU admissions reported could bias AMR data. Reported overall infection prevention and control (IPC) improvement could decrease AMR rates, whereas increases in selected inappropriate IPC practices and antimicrobial prescribing could increase rates. Most did not yet have complete data on changing AMR rates due to COVID-19. CONCLUSIONS: This was the first survey to explore the global impact of COVID-19 on AMR among GLASS countries. Responses highlight important actions to help ensure that AMR remains a global health priority, including engaging with GLASS to facilitate reliable AMR surveillance data, seizing the opportunity to develop more sustainable IPC programmes, promoting integrated antibiotic stewardship guidance, leveraging increased laboratory capabilities and other system-strengthening efforts.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Humans , Pandemics/prevention & control , SARS-CoV-2 , Surveys and Questionnaires
5.
Antimicrob Resist Infect Control ; 10(1): 113, 2021 07 31.
Article in English | MEDLINE | ID: covidwho-1334760

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) pandemic has again demonstrated the critical role of effective infection prevention and control (IPC) implementation to combat infectious disease threats. Standards such as the World Health Organization (WHO) IPC minimum requirements offer a basis, but robust evidence on effective IPC implementation strategies in low-resource settings remains limited. We aimed to qualitatively assess IPC implementation themes in these settings. METHODS: Semi-structured interviews were conducted with IPC experts from low-resource settings, guided by a standardised questionnaire. Applying a qualitative inductive thematic analysis, IPC implementation examples from interview transcripts were coded, collated into sub-themes, grouped again into broad themes, and finally reviewed to ensure validity. Sub-themes appearing ≥ 3 times in data were highlighted as frequent IPC implementation themes and all findings were summarised descriptively. RESULTS: Interviews were conducted with IPC experts from 29 countries in six WHO regions. Frequent IPC implementation themes including the related critical actions to achieve the WHO IPC core components included: (1) To develop IPC programmes: continuous advocacy with leadership, initial external technical assistance, stepwise approach to build resources, use of catalysts, linkages with other programmes, role of national IPC associations and normative legal actions; (2) To develop guidelines: early planning for their operationalization, initial external technical assistance and local guideline adaption; (3) To establish training: attention to methods, fostering local leadership, and sustainable health system linkages such as developing an IPC career path; (4) To establish health care-associated (HAI) surveillance: feasible but high-impact pilots, multidisciplinary collaboration, mentorship, careful consideration of definitions and data quality, and "data for action"; (5) To implement multimodal strategies: clear communication to explain multimodal strategies, attention to certain elements, and feasible but high-impact pilots; (6) To develop monitoring, audit and feedback: feasible but high-impact pilots, attention to methods such as positive (not punitive) incentives and "data for action"; (7) To improve staffing and bed occupancy: participation of national actors to set standards and attention to methods such as use of data; and (8) To promote built environment: involvement of IPC professionals in facility construction, attention to multimodal strategy elements, and long-term advocacy. CONCLUSIONS: These IPC implementation themes offer important qualitative evidence for IPC professionals to consider.


Subject(s)
COVID-19/prevention & control , Health Plan Implementation/standards , Infection Control/standards , World Health Organization , COVID-19/epidemiology , Cross Infection/prevention & control , Health Plan Implementation/statistics & numerical data , Health Resources/standards , Health Resources/statistics & numerical data , Humans , Infection Control/methods , Internationality , Qualitative Research
6.
BMC Infect Dis ; 21(1): 539, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261266

ABSTRACT

BACKGROUND: In sub-Saharan Africa, acute respiratory infections (ARI), acute gastrointestinal infections (GI) and acute febrile disease of unknown cause (AFDUC) have a large disease burden, especially among children, while respective aetiologies often remain unresolved. The need for robust infectious disease surveillance to detect emerging pathogens along with common human pathogens has been highlighted by the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. The African Network for Improved Diagnostics, Epidemiology and Management of Common Infectious Agents (ANDEMIA) is a sentinel surveillance study on the aetiology and clinical characteristics of ARI, GI and AFDUC in sub-Saharan Africa. METHODS: ANDEMIA includes 12 urban and rural health care facilities in four African countries (Côte d'Ivoire, Burkina Faso, Democratic Republic of the Congo and Republic of South Africa). It was piloted in 2018 in Côte d'Ivoire and the initial phase will run from 2019 to 2021. Case definitions for ARI, GI and AFDUC were established, as well as syndrome-specific sampling algorithms including the collection of blood, naso- and oropharyngeal swabs and stool. Samples are tested using comprehensive diagnostic protocols, ranging from classic bacteriology and antimicrobial resistance screening to multiplex real-time polymerase chain reaction (PCR) systems and High Throughput Sequencing. In March 2020, PCR testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and analysis of full genomic information was included in the study. Standardised questionnaires collect relevant clinical, demographic, socio-economic and behavioural data for epidemiologic analyses. Controls are enrolled over a 12-month period for a nested case-control study. Data will be assessed descriptively and aetiologies will be evaluated using a latent class analysis among cases. Among cases and controls, an integrated analytic approach using logistic regression and Bayesian estimation will be employed to improve the assessment of aetiology and associated risk factors. DISCUSSION: ANDEMIA aims to expand our understanding of ARI, GI and AFDUC aetiologies in sub-Saharan Africa using a comprehensive laboratory diagnostics strategy. It will foster early detection of emerging threats and continued monitoring of important common pathogens. The network collaboration will be strengthened and site diagnostic capacities will be reinforced to improve quality management and patient care.


Subject(s)
Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Mass Screening , Sentinel Surveillance , Bayes Theorem , Burkina Faso , Case-Control Studies , Cote d'Ivoire , Democratic Republic of the Congo , Fever/epidemiology , Fever/microbiology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Humans , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , South Africa
7.
Euro Surveill ; 26(10)2021 03.
Article in English | MEDLINE | ID: covidwho-1136423

ABSTRACT

IntroductionThe Robert Koch Institute (RKI) managed the exchange of cross-border contact tracing data between public health authorities (PHA) in Germany and abroad during the early COVID-19 pandemic.AimWe describe the extent of cross-border contact tracing and its challenges.MethodsWe analysed cross-border COVID-19 contact tracing events from 3 February to 5 April 2020 using information exchanged through the European Early Warning Response System and communication with International Health Regulation national focal points. We described events by PHA, number of contacts and exposure context.ResultsThe RKI processed 467 events, initiating contact to PHA 1,099 times (median = 1; interquartile range (IQR): 1-2) and sharing data on 5,099 contact persons. Of 327 (70%) events with known exposure context, the most commonly reported exposures were aircraft (n = 64; 20%), cruise ships (n = 24; 7%) and non-transport contexts (n = 210; 64%). Cruise ship and aircraft exposures generated more contacts with authorities (median = 10; IQR: 2-16, median = 4; IQR: 2-11) and more contact persons (median = 60; IQR: 9-269, median = 2; IQR: 1-3) than non-transport exposures (median = 1; IQR: 1-6 and median = 1; IQR: 1-2). The median time spent on contact tracing was highest for cruise ships: 5 days (IQR: 3-9).ConclusionIn the COVID-19 pandemic, cross-border contact tracing is considered a critical component of the outbreak response. While only a minority of international contact tracing activities were related to exposure events in transport, they contributed substantially to the workload. The numerous communications highlight the need for fast and efficient global outbreak communication channels between PHA.


Subject(s)
COVID-19/diagnosis , Contact Tracing , Germany/epidemiology , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL